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Introduction to BART Our Contribution Vanilla vs. Smooth BART

. Problem: non-parametric regression: 4, ~ N (f(x,), o) We introduce BART with functional outputs of the form:
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* Main Idea: approximate f(x) with step-function (i.e., tree) u(z) = Zﬁdh(wT$ + by) < -
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* Insight: express complicated tree as sum of simpler trees
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inspired approximation of treed Gaussian process ensembles.
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Step 1: Update (T, 0) — (T*, ©*) with Metropolis-Hastings. Friedman Function: f(x) = 10sin(rz129)4+20(23—0.5)" 410244525
* Result: function estimation with uncertainty quantification A new tree is proposed that differs from the current tree in exactly 1.6- l
one node by considering either a GROW or PRUNE move:
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* Issue: BART inherently produces non-smooth outputs

Note: updates only require a linear scan of the data
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